[첨부 제4호]

스마트디바이스 키누출 검증 시스 템(KLA-SCARF)

김태성 (taesung@etri.re.kr) 디바이스보안분석연구실

FTDI SATM-155M FTDI SATM-155M ATHINODEM

- 1. 기술의 개요
- 2. 기술이전 내용 및 범위
- 3. 경쟁기술과 비교
- 4. 기술의 사업성
- 활용분야 및 기대효과
- 5. 국내외 시장 동향

. 기술의 개요

■ 키누출 공격 안전성 검증 시스템

. 기술이전 내용 및 범위

- ❖ KLA-SCARF 시스템 기술
 - ❖ 부채널 공격 안전성 검증 소프트웨어
- ❖ 검증 보드 기술
 - ❖ IC 카드, 소프트웨어, 하드웨어 용도의 6종

■ 기술 개발 현황

. 기술이전 내용 및 범위

■ 기술 개발 현황

❖ 기술성숙도(TRL: Technology Readiness Level) 단계: (6)단계

구 분↓		정 의↓	세 부 설 명 구
기초↓	1.	기초 이론/실험↓	•기초이론 정립 단계↓
연구! 단계↓	2,	실용 목적의 아이디어! 특허 등 개념정립↔	•기술개발 개념 정립 및 아이디어에 대한 특허 출원 단계↓
실험↓ 단계↓	3↓	실험실 규모의↓ 기본성능 검증↓	•실험실 환경에서 실험 또는 전산 시뮬레이션을 통해 기본성능이 검증될 수 있는 단계↓ •개발하려는 부품/시스템의 기본 설계도면을 확보하는 단계↓
	4.	실험실 규모의↓ 소재/부품/시스템↓ 핵심성능 평가↓	·시험생품을 제작하여 핵심성능에 대한 평가가 완료된 단계↓ ·3 단계에서 도출된 다양한 결과 중에서 최적의 결과를 선택하려는 단계↓ ·컴퓨터 모사가 가능한 경우 최적화를 완료하는 단계↓
시작품! 단계↓	5 🛶	확정된 소재/부품/! 시스템시작품 제작! 및 성능 평가리	•확정된 소재/부품/시스템의 실험실 시작품 제작 및 성능 평가가 완료된 단계↓ •개발 대상의 생산을 고려하여 설계하나 실제 제작한 시작품 샘플은 1~수개 미만인 단계↓ •경제성을 고려하지 않고 기술의 핵심성능으로만 볼 때, 실제로 판매가 될 수 있는 정도로 목표 성능을 달성한 단계↓
	6,1	<u>파일록</u> 규모↓ 시작품 제작 및↓ 성능 평가↓	*파일론 규모(복수 개~양산규모의 1/10정도)의 시작품 제작 및 평가가 완료된 단계↓ *파일론 규모 생산품에 대해 생산량 생산용량 불량률 등 제시↓ *파일론 생산을 위한 대규모 투자가 동반되는 단계↓ *생산기업이 수요기업 적용환경에 유사하게 자체 현장테스트를 실시하여 목표 성능을 만족시킨 단계↓ *성능 평가 결과에 대해 가능하면 공인인증 기관의 성적서 확보↓
실용화! 단계 리	7,	신뢰성평가 및↓ 수요기업 평가↓	・실제 환경에서 성능 검증이 이루어지는 단계↓ ・부품 및 소재개발의 경우 수요업체에서 직접 <u>파일론</u> 시작품을 현장 평가(성능 및 신뢰성 평가)↓ ・가능하면 인증기관의 신뢰성 평가 결과 제출↓
	84	시제품 인증↓ 및 표준화↓	•표준화 및 인허가 취득 단계↓
사업화+	9+1	사업화	•본격적인 양산 및 사업화 단계↓ •6-시그마 등 품질관리가 중요한 단계↓

. 기술의 사업성

■ 제품 서비스의 예상 수요자

- ❖ 보안 알고리즘, 보안 칩, 보안이 적용된 소형 디바이스 제작업체
- ❖ 제품 보안성 평가 기관

❖기존 기술과 비교하여 유리한 점

- 다양한 u-Device에 대한 부채널 공격에 대한 안전성 검증 가능
- 다양한 형태의 검증 보드 지원 가능
- 기술전수 교육 및 기술지원의 용이함

. 국내외 시장 동향

■ 국외 관련 제품 및 서비스 동향

- Cryptography Research Inc. 사, RiScure 사, Brightsight 사 등에서 부채널 분석 장비 개발
- (유럽) 오스트리아, 독일, 벨기에 등이 참여한 SCARD(Side Channel Analysis Re sistant Design) 프로젝트('03년~'06년)는 스마트카드 안전성 평가방법 및 대응법 가이드라인 등에 대한 연구 진행
- (일본) '07년부터 산업기술종합연구소(AIST) 산하 정보보호연구센터(RCIS) 주관으로 부채널 분석보드(SASEBO보드)를 개발/배포하고 그 결과를 반영한 JCMVP 및 NIST FIPS 140-3 표준 작성 중

감사합니다.

www.etri.re.kr

- ※ 하단의 문의처 소개후, 발표후 개별기술 상담이 가능함을 다시 한 번 안내함
- ♣ 연락처 : 소프트웨어연구부문, 김태성 선·연 (042-860-1612, taesung@etri.re.kr)