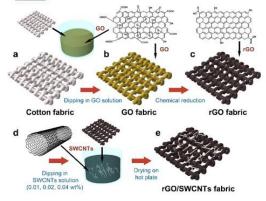

기술이전 발표자료

기술이전 책임자 : 최 춘 기 ICT소재부품연구소, 소재부품원천연구본부 신소자연구그룹

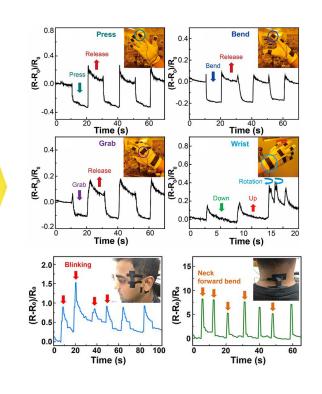


1. 이전 기술의 개요

❖ 이전 기술의 개요


 외부의 압력 및 스트레인에 민감하게 반응하는 유연한 나노복합소재 기반 압력센서 기술로서, 기존에 상용화된 피에조저항 방식의 압력센서 기술과 비교하여 매우 유연하면서 높은 민감도, 빠른 응답속도, 우수한 내구성 및 방수 특성을 가지는 압력센서 기술임. 또한 인체에 쉽게 탈부 착이 가능하며, 피부나 의복에 적용 가능한 기술임.

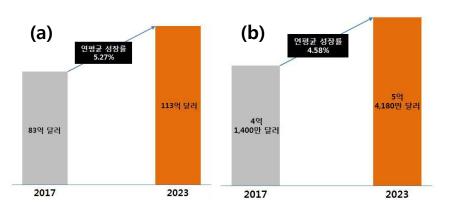
rGO/SWCNT fabric-based wearable strain-pressure sensor

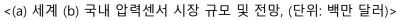


- Simple fabrication process
- Extremely high durability during repeated pressure and bending (compressive) test (0~10⁵)
- Excellent water resistance properties

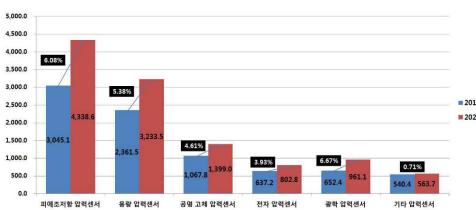
MoS₂/GPN/Ecoflex-based flexible strain-pressure sensor

- ➤ High sensitivity (~6 kPa-1)
- Robust durability (4,000 cycles)
- ➤ Superior gauge factor of ~24
- Good resiliency and linearity





2. 이전 기술의 필요성 및 시장성


❖ 이전 기술의 필요성

- 나노복합소재 기반 압력센서 기술은 기존 상용화된 피에조 저항형 압력센서와 비교하여 매우 우수한 유연성을 가지며 피부에 탈부착이 가능하며, 낮은 압력변화에도 높은 민감도 및 수백 mm초의 빠른 응답 반응을 통하여 정확하게 감지할 수 있는 기술임.
- 현재 유사기술을 이용한 제품이 시장에 출시되지 않아 기술 및 시장 선점이 가능.
- 또한, 국내외 스마트폰 시장 및 이어폰 이어캡 센서와 같은 IoT 센서로서 스마트 기기 분야 등에 폭넓게 응용할 수 있기 때문에 기술 이전이 절실히 요구됨.

<글로벌 압력센서 시장의 기술별 시장 규모 및 전망, (단위: 백만 달러)>

자료출처: Marketsandmarkets, Pressure Sensor Market, 2017

2. 이전 기술의 필요성 및 시장성

❖ 이전 기술의 시장성

- 4차 산업 혁명에 따른 자동차, 모바일, 의료 및 가정용 전자기기 산업 전반에 걸쳐 스마트 센서 시장 규모는 증가하였으나, 국내센서 시장의 규모는 세계시장의 1.6%, 기술수준은 선진국의 64%정도로 미비함.
- 이러한 스마트 센서 관련 산업은 기술과 창의적인 아이디어만으로도 창업이 가능한 중소기업형 산업으로서 소재 및 공정 분야의 기술개발이 절실히 요구됨.
- 매년 10억 개의 센서가 출하되고 생산량은 연평균 50% 이상 증가 하는 추세이며, 2025년까지 1조 개 이상 생산될 전망.
 - → 국내센서 생산업체들은 설계역량을 보유하고 있음에도 생산인프라 부실로 인한 양산기회부족, 제품신뢰성 저하 등을 이유로 국산화 대신 센서 제품을 90% 이상 해외에 의존.
- 세계 센서 산업 중 압력센서 시장이 세계에서 2번째로 높으며, 2017년에 83억 달러에서 연평균 성장률 5.27%로 증가하여, 2023년에는 113억 달러에 이를 것으로 예상.
- 압력센서의 응용 분야는 자동차용, 의료용, 산업용, 가정제품용 등으로 다양한 분야에 광범위하게 사용됨.
- 압력센서 중 피에조 저항형 압력센서가 제작 및 작동방식이 간단하고, 가격이 저렴하여 세계의 압력 센서 시장에서 가장 많이 사용되고 있음.

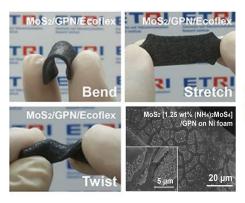
3. 이전 기술의 내용 및 범위

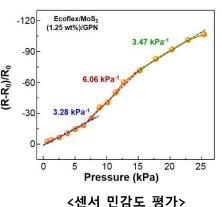
❖ 기술 이전 내용

- 나노복합소재 기반 압력센서 제작 및 압력 변화 평가 기술
- 나노복합소재 기반 압력센서 민감도 및 내구성 성능 평가 기술

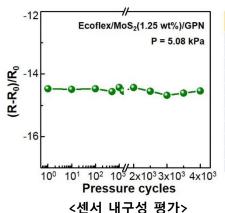
❖ 기술 이전 범위

- 나노복합소재 기반 압력센서 제작 및 압력 변화 평가 기술
 - · 나노 복합소재 기반 압력 센서 제작
 - · 나노복합소재 기반 압력센서의 압력 변화에 따른 저항변화 평가
 - · 1kPa-20kPa 압력 범위 내에서 저항 변화 값이 -1 이하인 성능 평가
- 나노복합소재 기반 압력센서 민감도 및 내구성 성능 평가 기술
 - · 1kPa-20kPa 압력 범위 내에서 인가압력 변화에 따른 센서 민감도 평가
 - · 최대 4000 cycles 반복 압축 시험 후, 저항변화율에 따른 내구성 평가




4. 이전 기술의 특징 및 장점

❖ 이전 기술의 특징 및 장점


- 그래핀 (Graphene), 맥신 (MXene), 탄소나노튜브 (CNT)와 같은 전도성 나노 물질 표면에 2차원 물질 기반 나노구조체 형성 후 폴리머를 결합하게 되면, 매우 유연하면서 우수한 전기전도도 및 센서민감도를 가지는 피에조 저항형 센서를 제작 가능.
- 2차원 복합소재 기반 피에조 저항형 센서는 인체에 탈부착이 가능하고 1 20 kPa의 외부압력변화를 <mark>감지</mark>가 가능하며, 압력에 대한 높은 민감도 (3kPa-1 이상)를 나타냄.
- 매우 유연하고, 복원력이 우수한 폴리머가 2차원 나노복합소재 표면에 코팅되어 있어, 최대 4,000 cycles의 압축반복 시험 후에도 저항변화율이 초기저항 변화율 값의 ±8% 미만의 변화율을 가지기 때문에 소자의 내구성 측면에서도 우수함.

<2차원 나노복합소재>

Pressure Range (kPa)	(R-R ₀)/R ₀	
0.6	- 2.48	
1.27	- 3.89	
2.54	- 6.39	
3.81	- 10.48	
5.08	- 14.55	
6.35	- 18.2	
7.62	- 25.37	
8.89	- 35.54	
10.16	- 40.42	
11.43	- 50.03	
12.7	- 60.23	
15.24	- 71.56	
17.78	- 82.78	
20.32	- 91.98	
22.8	- 101.21	
25.4	- 106.79	

반복횟수	저항변화율	서양면와율 편차 (%)
1	-14.47	-3%
10	-14.49	-1%
100	-14.47	-3%
500	-14.56	6%
1000	-14.43	-7%
1500	-14.55	5%
2000	-14.43	-7%
2500	-14.55	5%
3000	-14.58	8%
3500	-14.56	6%
4000	-14.54	4%

한국전자통신연구원 www.etri.re.kr

5. 적용분야 및 기대효과

❖ 적용분야 및 기대효과

- 인체에 쉽게 부착하여 자세교정 및 졸음 방지와 같은 인체의 모션감지 등의 전자 피부용 (e-skin) 유연 촉각 센서에 응용.
- 심박수와 혈압 같은 건강상태를 실시간 모니터링 할 수 있는 의료기기나 이어폰의 이어캡에 적용하여 입을 다물거나 벌렸을 때 귀속 외이도의 압력을 신속히 감지하여 스마트폰을 on/off 시키는 스위치 및 턱관절 장애 예방 및 교정용 의료기기, 스마트 미용 마스크 팩 등에 응용가능.
- 2차원 나노 복합소재 기반 압력센서를 이용하게 되면 미세한 신체 움직임이나 생체신호에서 나오는 다양한 정보들을 더욱 정확하고 빠르게 검출 할 수 있음.

<인체 모션 감지>

<헬스케어>

<스마트 이어폰>

<스마트 마스크팩>

