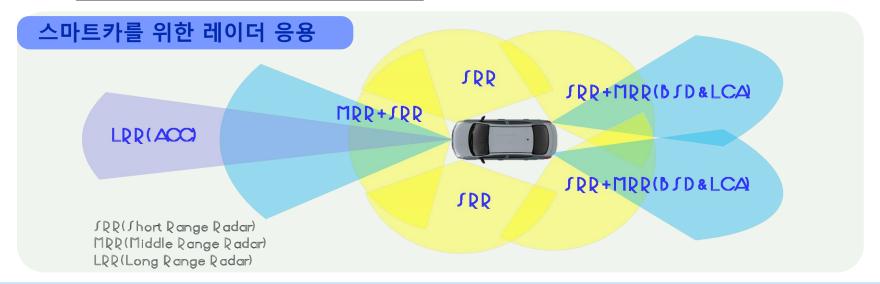
[별첨 5]

차량용 77GHz 레이더 신호처리 SW 기술

김종덕 책임연구원 (jd03@etri.re.kr) 자동차IT플랫폼연구실

EIG

목 차


- 1. 기술의 개요
- 2. 기술이전 내용 및 범위
- 3. 경쟁기술과 비교
- 4. 기술의 사업성
 - 활용분야 및 기대효과
- 5. 국내외 시장 동향

1. 기술의 개요

■ 차량용 77GHz 레이더 신호처리 SW 기술

- ❖ 차량용 레이더 기술은 차량 주변의 물체를 탐지하기 위해 고안 된 파형을 전송하여 반사되어 오는 수신신호를 신호 처리함으로 써 물체와의 거리, 속도, 각도를 측정하는 기술임
- ❖ 본 기술은 77GHz 대역의 밀리미터파 송신과 수신을 담당하는 FEM(front-end module)을 제어하고, 레이더 수신신호를 처리하기 위한 알고리즘을 MCU기반 BEM(back-end module) 위에 임베디드화 소프트웨어로 구현한 기술임

2. 기술미전 내용 및 범위

■ 기술이전 내용 및 범위

- ❖ Freescale MPC5775K MCU 칩을 기반으로 77GHz 대역 밀리미터파 FMCW 송신/수신을 위한 RF 칩셋 제어, 거리/속도/각도 검출을 위한 신호처리 소프트웨어 패키지
 - FEM RF 칩셋 제어를 위한 소프트웨어 기능(Freescale/Infineon 중 택
 1)

	<u>시호처리 소프트웨어 패키지른 위7</u>	<u>까 세무기누(변천자료)</u>
번호	기술이전 범위	내 용
1	$77 \mathrm{GHz}$ 레이더 신호처리 소프트웨어 (SW)	.c 파일로 구성된 프로그램 소스코드
2	신호처리 SW 시험용 참조보드	FEM 인터페이스 보드 및 MPC5775K 보드
3	관련 기술문서 및 지적재산(TM/TDP, 특허)	기술문서 4종(요구사항정의서,상세설계서, 시험절차 서, 시험결과서), 투허 1건

■ 기술 개발 현황

- ❖ 차량주변 위협장애물 검출 기술
 - 기술성숙도단계 : 시작품단계 (5 단계)
 - 알고리즘 개발 완료, 관련 시험 완료

2. 기술이전 내용 및 범위

■ 기술 개발 현황

❖ 기술성숙도(TRL: Technology Readiness Level) 단계:

•	_		,	•	
	_	_L	-11		

	FLOR	THE OLD					
구 분 ←		정 의 🗸	세 부 <u>설</u> 명↓				
기초↓	1.	기초 이론/실험↓	·기초이론 정립 단계↓				
연구! 단계↓	2,	실용 목적의 아이디어! 특허 등 개념정립↔	- [시국/1월 /1월 일본 및 UNILUVU LIVE 등여 국지 단계 .]				
실험! 단계 -	3↓	실험실 규모의↓ 기본성능 검증↓	•실험실 환경에서 실험 또는 전산 시뮬레이션을 통해 기본성능이 검증될 수 있는 단계↓ •개발하려는 부품/시스템의 기본 설계도면을 확보하는 단계↓				
	44	실험실 규모의↓ 소재/부품/시스템↓ 핵심성능 평가↓	·시험생품을 제작하여 핵심성능에 대한 평가가 완료된 단계↓ ·3단계에서 도출된 다양한 결과 중에서 최적의 결과를 선택하려는 단계↓ ·컴퓨터 모사가 가능한 경우 최적화를 완료하는 단계↓				
시작품I 단계 리	5 ₊ 1	확정된 소재/부품/! 시스템시작품 제작! 및 성능 평가↓	•확정된 소재/부품/시스템의 실험실 시작품 제작 및 성능 평가가 완료된 단계↓ •개발 대상의 생산을 고려하여 설계하나 실제 제작한 시작품 샘플은 1~수개 미만인 단계↓ •경제성을 고려하지 않고 기술의 핵심성능으로만 볼 때, 실제로 판매가 될 수 있는 정도로 목표 성능을 달성한 단계↓				
	641	파일론 규모↓ 시작품 제작 및↓ 성능 평가↓	*파일롯 규모(복수 개~양산규모의 1/10정도)의 시작품 제작 및 평가가 완료된 단계↓ *파일롯 규모 생산품에 대해 생산량, 생산용량 불량률 등 제시↓ *파일롯 생산을 위한 대규모 투자가 동반되는 단계↓ *생산기업이 수요기업 적용환경에 유사하게 자체 현장테스트를 실시하여 목표 성능을 만족시킨 단계↓ *성능 평가 결과에 대해 가능하면 공인인증 기관의 성적서 확보↓				
실용화! 단계 라	7.↓	신뢰성평가 및↓ 수요기업 평가↓	•실제 환경에서 성능 검증이 이루어지는 단계↓ •부품 및 소재개발의 경우 수요업체에서 직접 <u>짜일롯</u> 시작품을 현장 평가(성능 및 신뢰성 평가)↓ •가능하면 인증기관의 신뢰성 평가 결과 제출↓				
	8+1	시제품 인증↓ 및 표준화↓	•표준화 및 인허가 취득 단계↓				
사업화+	9₊1	사업화↓	•본격적인 양산 및 사업화 단계↓ •6-시그마 등 품질관리가 중요한 단계↓				

3. 경쟁기술과 비교

■ 차량용 77GHz 레이더 신호처리 SW 기술

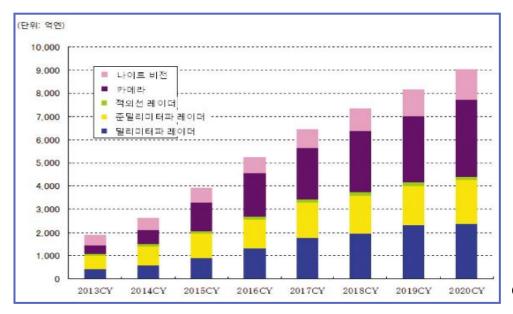
- ❖ 기술의 특징
 - FMCW기반 파형 생성(Fast-chirp방식), OS-CFAR 및 CA-CRAR 알고리즘 포함 Range/Velocity/Angle Estimation 신호처리 기술 임.
 - Freescale 사의 최신 MCU(MPC5775K) 기반 임베디드 SW 임.
 - 77GHz SRR 레이더 센서모듈과 연동하여 정합시험이 완료됨.
- ❖ 기존 경쟁기술 대비 개량된 부분
 - 기술적 측면: OS-CFAR의 정렬 작업 소요 시간을 단축하기 위한 방법 투허 출원하고 신호처리 구현 함.
 - 사업적 측면 : 상용화 기능이 검증된 레이더 칩셋을 기반으로 임베디 드화 개반 및 시헌추정 되어 상용화 제품 기숙개반 기가의 다축이 가

출원/ 등록 구분	특허명	출원국 (등록)	출원(등록)번호	출원(등록) 년도
출원	순차통계 일정 오경보율 검파의 처리 속도 향상방법	대한민국	10-2014-0059 012	2014

4. 기술의 사업성

■ 차량용 77GHz 레이더 신호처리 SW 기술

- ❖ 예상 응용 제품 및 서비스
 - 차량용 24GHz/77 GHz FMCW 레미더 제품(ex. SRR/MRR 등).
 - 레이더를 포함하는 이종 센서들간의 퓨전 센서 제품(ex. 카메라&레이더 융복합 센서 등).
 - FMCW기반 해양용 레이더 및 보완 감시용 레이더, loT를 위한 소형 밀리미터파 레이더 및 유사 기술을 사용하는 초음파/적외선 센서 등을 위한 기반기술로도 응용이 가능할 것으로 예상 함.


❖ 사업성

- 지능형자동차관련 센서부품/시스템 시장 확대로 2013년부터 2020년까지 77GHz 레미더 시장은 연평균 성장률은 28.2%로 예상됨
- ❖ 기술이전 업체 조건
 - 없음
- ❖ 사업화시 제약 조건
 - 없음

5. 국내외 시장 동향

■ 스마트카 핵심 센서부품의 세계 시장규모

(출처: 일본, 야노경제연구소, 2014.10)

- 지능형자동차관련 센서부품/시스템 시장 확대로 2013년부터 2020년까지 77GHz 레이더 시장은 연평균 성장률은 28.2%로 예상되며, 이와 함께 자율주행/스마트카 관련 핵심 ADAS 장착 비중은 2020년까지 50% 이상이 될 것으로 예측 됨
- 유럽 EuroNCAP은 2014년부터 AEB를 50% 이상 장착 시 최고 등급부여, LDW, LKAS 시스템도 50% 이상의 장착률시 높은 점수를 부여하고, 미국 NHTSA는 후방 사각지대 보행자 보호를 위한 후방 카메라 장착을 2014년까지 의무 탑재하는 법안을 통과 함.

감사합니다.

www.etri.re.kr

♣ 연락처 : 자동차IT플랫폼연구실, 김종덕 책임 (010-7238-5653, jd03@etri.re.kr) 자동차IT플랫폼연구실, 박미룡 실장 (053-670-8088, mrpark@etri.re.kr)