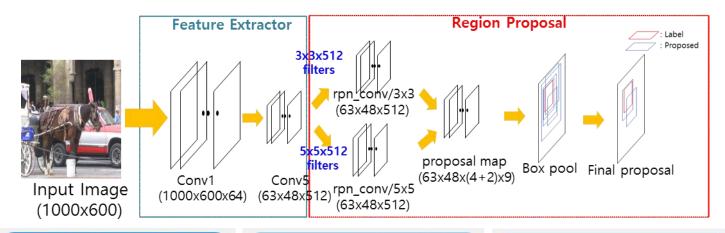
답러닝 기반 사물 인식 및 검출 기술

박종열 (jongyoul@etri.re.kr)

시각지능소프트웨어연구실


EIG

목 차

- 1. 기술의 개요
- 2. 기술이전 내용 및 범위
- 3. 경쟁기술과 비교
- 4. 기술의 사업성
 - 활용분야 및 기대효과
- 5. 국내외 시장 동향

1. 기술의 개요

- ETIRI Branches Rusic Research
- Deep Neural Network 학습 기반으로 이미 지/동영상에서 다양한 사물을 분류 및 검출하는 사물 동시인식 기술
 - ❖ 본 기술은 기계학습의 Under-fitting 문제와 Over-fitting 문제를 해결하고 다양한 사물을 동시 분류 및 인식하는 기술로 신경망 시스템 및 관심 영역 추출과 시각화 연계 기술을 포함.

특징맵 네트워크 개발

특징맵 네트워크의 성능 향상을 통한 네트워크 가속화

다중 사물 지원 기술 개발

다양한 사물을 동시 인식하기 위한 심층 신경 네트워크 개발

네트워크 시각화 지원

네트워크 중간 결과를 확인할 수 있는 시각화 기술 개발

2. 기술이전 내용 및 범위 [1]

■ 기술이전 내용

- 1. 눈높이 카메라 각도에서의 객체 검출 엔진
 - ◇사물과 같은 위치에서 바라보는 눈높이 영상에서 객체의 위치 추정 기술
 - ◇눈높이 영상에서 다양한 객체의 종류를 분류하여 인식하는 기술
 - ❖ 해당 엔진을 위한 신경망의 구조
 - ❖ 80종류의 객체를 검출하기 위한 학습된 모델
 - ❖ 객체와 배경을 분리하여 객체의 위치를 추정하는 기능
 - ❖ 객체의 종류를 분류하여 추른하는 기능
 - ❖ 검출된 객체의 정보를 가시화하는 기능
- 2. 높은 카메라 각도에서의 객체 검출 엔진
 - ❖ 객체보다 높은 위치에서 내려다보는 영상에서 객체 위치 추정 기술
 - ❖높은 카메라 각도에서 객체의 종류를 분류하여 인식하는 기술
 - ❖ 해당 엔진을 위한 신경망의 구조
 - ❖ 10종류의 객체를 검출하기 위한 학습된 모델
 - ❖ 객체와 배경을 분리하여 객체의 위치를 추정하는 기능
 - ❖ 객체의 종류를 분류하여 추론하는 기능

2. 기술이전 내용 및 범위 [2]

■ 기술이전 내용

- 3. 검출 엔진을 위한 고속화 엔진
 - ❖제시된 세부 기술 1과 2의 객체 검출 엔진들의 객체 검출 속도를 향상시키기는 기술
 - ❖ 디바이스 종류에 따른 고속화 기능
 - ❖ 다중 디바이스를 이용한 교속화 기능
- 4. 눈높이 카메라 각도에서의 속도 우선 객체 검출 엔진
 - ◆눈높이 영상에서 속도 우선 객체 위치의 추정 기술
 - ❖눈높이 영상에서 속도 우선으로 객체의 종류를 분류하여 인식하는 기술
 - ❖ 해당 엔진을 위한 신경망의 구조
 - ❖ 80종류의 객체를 속도 우선 검출하기 위한 학습된 모델
 - ❖ 객체와 배경을 분리하여 객체의 위치를 추정하는 기능
 - ❖ 객체의 종류를 분류하여 추론하는 기능
 - ❖ 속도 우선으로 검출된 객체의 정보를 가시화하는 기능

2. 기술이전 내용 및 범위 [3]

■ 기술이전 범위

- ❖ 각 세부 기술별 공통 제공 부분
 - ❖판련 소스 코드 및 샘플 프로그램
 - **☆시험 절차서 및 결과서**
- ❖ 세부 기술 3을 제외한 1, 2, 4 검출 엔진 제공 부분
 - ❖검출 엔진별 신경망 구조
 - ❖검출 엔진별 딥러닝 기반 학습 모델

2. 기술미전 내용 및 범위

■ 기술 개발 현황

❖ 기술성숙도(TRL: Technology Readiness Level) 단계:

		· — •	
구 분↓	단계↓	정 의↓	세 부 설 명↓
기초↓	1.	기초 이론/실험↓	·기초이론 정립 단계↓
연구! 단계↓	2,	실용 목적의 아이디어! 특허 등 개념정립↔	•기술개발 개념 정립 및 아이디어에 대한 특허 출원 단계↓
실험! 단계 J	3+1	실험실 규모의↓ 기본성능 검증↓	•실험실 환경에서 실험 또는 전산 시뮬레이션을 통해 기본성능이 검증될 수 있는 단계↓ •개발하려는 부품/시스템의 기본 설계도면을 확보하는 단계↓
	4↓	실험실 규모의↓ 소재/부품/시스템↓ 핵심성능 평가↓	·시험생품을 제작하여 핵심성능에 대한 평가가 완료된 단계↓ ·3 단계에서 도출된 다양한 결과 중에서 최적의 결과를 선택하려는 단계↓ ·컴퓨터 모사가 가능한 경우 최적화를 완료하는 단계↓
시작품! 단계↓	ل45	확정된 소재/부품/I 시스템시작품 제작I 및 성능 평가리	•확정된 소재/부품/시스템의 실험실 시작품 제작 및 성능 평가가 완료된 단계↓ •개발 대상의 생산을 고려하여 설계하나 실제 제작한 시작품 샘플은 1~수개 미만인 단계↓ •경제성을 고려하지 않고 기술의 핵심성능으로만 볼 때, 실제로 판매가 될 수 있는 정도로 목표 성능을 달성한 단계↓
	6,	<u>파일록</u> 규모↓ 시작품 제작 및↓ 성능 평가↓	*파일론 규모(복수 개~양산규모의 1/10정도)의 시작품 제작 및 평가가 완료된 단계↓ *파일론 규모 생산품에 대해 생산량 생산용량 불량률 등 제시↓ *파일론 생산을 위한 대규모 투자가 동반되는 단계↓ *생산기업이 수요기업 적용환경에 유사하게 자체 현장테스트를 실시하여 목표 성능을 만족시킨 단계↓ *성능 평가 결과에 대해 가능하면 공인인증 기관의 성적서 확보↓↓
실용화! 단계 리	7,	신뢰성평가 및↓ 수요기업 평가↓	・실제 환경에서 성능 검증이 이루어지는 단계↓ ・부품 및 소재개발의 경우 수요업체에서 직접 <u>파일론</u> 시작품을 현장 평가(성능 및 신뢰성 평가)↓ ・가능하면 인증기관의 신뢰성 평가 결과 제출↓
	84	시제품 인증↓ 및 표준화↓	•표준화 및 인허가 취득 단계↓
사업화↔	لہ9 .	사업화↓	•본격적인 양산 및 사업화 단계↓ •6-시그마 등 품질관리가 중요한 단계↓

3. 경쟁기술과 비교

■ 기술의 주요 특징

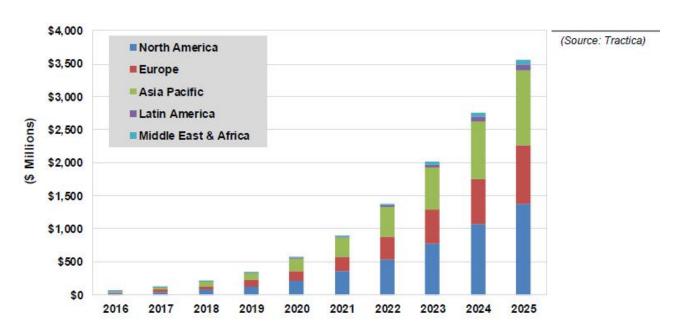
- ❖ 미미지/비디오에서 Deep Neural Network 기반의 학습 모 델을 이용하여 다수의 사물을 인식
- ❖ 미미지넷 챌린지 2017 객체 Detection 분야에 참가한 기술 을 기반으로 개발
- ❖ 객체를 바라보는 카메라 각도에 따라 객체의 위치 추정과 객체의 종류를 분류하여 객체를 인식
- ❖ 속도와 정확도의 상충판계(tradeoff)에서 제한된 환경내 속 도를 우선하거나 정확도를 유지한채 장비 성능과 개수에 따라 가속 가능
- ❖ 이미지/동영상을 입력으로 받아 사물의 위치와 분류를 결과물로 제공하는 기술로 응용에 대한 기술은 불포함

4. 기술의 사업성

■ 활용 분야

예상 제품 / 서비스	예상 수요자
공간 상황 분석	- CCTV 업체 - 보안 경비 업체 - 대형 산업시설 업체
시각지식 큐레이션	- 소셜 미디어 분석 업체 - 기업의 선호도 정보 수집 업체 - 쇼핑몰 등 맞춤형 서비스 제공 업체
원격시각	- 국방분야의 감시 정찰 시스템 - 사설 방법 업체의 원격 감시

■ 기대 효과


- ❖본 기술은 미미지/동영상의 내용을 분석하여 주변의 사물을 이해하는 기술 로, 영상 기반의 분석, 지식 생성, 상황 전달의 서비스에 활용 가능
- ❖기존의 소규모 사물을 지원하는 대신 다수의 사물을 지원하고 있어 다양한 환경에 적용할 수 있으며, 학습에 필요한 네트워크 기술을 포함하고 있어 필요한 서비스에 적용이 용이하고, 다양한 분야로 활용 가능

5. 국내외 시장 동향

ETR

■시장전망

- ❖ 지능형 미미지/동영상 분석 SW의 세계시장은 2016년 약 5,000억원에서 2025년 약 4조원 시장으로 성장미 예상되고 있어, 전세계적인 투자가 활발하게 진행되고 있는 분야임. (출처: tractica 2016)
- ❖ 영상 분석을 활용한 자동차, 의료, 보안 서비스를 포함하여 시장은 2025 년10조원 가까운 시장을 형성할 것으로 예정됨

감사합니다.

www.etri.re.kr